rs3755863 C>T

NC_000004.12:g.23813899C>T
NC_000004.11:g.23815522C>T
NG_028250.2:g.664077G>A
NM_013261.5:c.1584G>A
NM_013261.4:c.1584G>A
NM_013261.3:c.1584G>A
NR_148983.2:n.2413G>A
NR_148983.1:n.2337G>A
NR_148987.2:n.2412G>A
NR_148987.1:n.2336G>A
NR_148986.2:n.2330G>A
NR_148986.1:n.2254G>A
NR_148985.2:n.2325G>A
NR_148985.1:n.2249G>A
NM_001330751.2:c.1599G>A
NM_001330751.1:c.1599G>A
NR_148982.2:n.2260G>A
NR_148982.1:n.2184G>A
NM_001354826.2:c.1203G>A
NM_001354826.1:c.1203G>A
NM_001354825.2:c.1599G>A
NM_001354825.1:c.1599G>A
NM_001354827.2:c.1599G>A
NM_001354827.1:c.1599G>A
NR_148981.2:n.2187G>A
NR_148981.1:n.2111G>A
NM_001330752.2:c.1548G>A
NM_001330752.1:c.1548G>A
NM_001330753.2:c.1203G>A
NM_001330753.1:c.1203G>A
NR_148984.2:n.1705G>A
NR_148984.1:n.1735G>A
XM_005248131.6:c.1596G>A
XM_005248131.5:c.1596G>A
XM_005248131.4:c.1596G>A
XM_005248131.3:c.1596G>A
XM_005248131.2:c.1596G>A
XM_005248131.1:c.1596G>A
XM_005248134.5:c.1599G>A
XM_005248134.4:c.1599G>A
XM_005248134.3:c.1599G>A
XM_005248134.2:c.1599G>A
XM_005248134.1:c.1599G>A
XM_011513769.3:c.1599G>A
XM_011513769.2:c.1599G>A
XM_011513769.1:c.1599G>A
XM_011513768.2:c.1479G>A
XM_011513768.1:c.1479G>A
XM_011513771.2:c.1203G>A
XM_011513771.1:c.1203G>A
XM_047449549.1:c.1479G>A
XM_047449547.1:c.1479G>A
XM_047449550.1:c.1479G>A
XM_047449548.1:c.1479G>A
XM_047449546.1:c.1548G>A
XM_005248132.1:c.1575G>A
XM_047449553.1:c.1203G>A
XM_047449551.1:c.1584G>A
XM_047449552.1:c.1584G>A
свернуть все

Клиническая значимость

Эффект не изучен

Краткое описание

Мутация rs3755863 C>T расположена в гене PPARGC1A и представляет собой однонуклеотидную замену "C" на "T" в позиции 23,813,899 в хромосоме 4.

Частота встречаемости в мире 35 на 100 человек (по данным проекта TOPMED). Данных о частоте встречаемости в России не найдено. В англоязычной литературе существует не менее 13 публикаций об этой мутации.

Международные публикации в PubMed

1. Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD).

Yoneda M, Hotta K, Nozaki Y, Endo H, Uchiyama T, Mawatari H, Iida H, Kato S, Hosono K, Fujita K, Yoneda K, Takahashi H, Kirikoshi H, Kobayashi N, Inamori M, Abe Y, Kubota K, Saito S, Maeyama S, Wada K, Nakajima A
BMC Gastroenterol 2008 Jun 27

3. Associations of Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Gene With Subsequent Coronary Heart Disease: An Individual-Level Meta-Analysis.

Schillemans T, Tragante V, Maitusong B, Gigante B, Cresci S, Laguzzi F, Vikström M, Richards M, Pilbrow A, Cameron V, Foco L, Doughty RN, Kuukasjärvi P, Allayee H, Hartiala JA, Tang WHW, Lyytikäinen LP, Nikus K, Laurikka JO, Srinivasan S, Mordi IR, Trompet S, Kraaijeveld A, van Setten J, Gijsberts CM, Maitland-van der Zee AH, Saely CH, Gong Y, Johnson JA, Cooper-DeHoff RM, Pepine CJ, Casu G, Leiherer A, Drexel H, Horne BD, van der Laan SW, Marziliano N, Hazen SL, Sinisalo J, Kähönen M, Lehtimäki T, Lang CC, Burkhardt R, Scholz M, Jukema JW, Eriksson N, Åkerblom A, James S, Held C, Hagström E, Spertus JA, Algra A, de Faire U, Åkesson A, Asselbergs FW, Patel RS, Leander K
Front Physiol 2022

4. Combination of Genomic and Transcriptomic Approaches Highlights Vascular and Circadian Clock Components in Multiple Sclerosis.

Scapoli C, Ziliotto N, Lunghi B, Menegatti E, Salvi F, Zamboni P, Baroni M, Mascoli F, Bernardi F, Marchetti G
Int J Mol Sci 2021 Dec 28

5. Genetic Variants in the Activation of the Brown-Like Adipocyte Pathway and the Risk for Severe Obesity.

da Fonseca ACP, da Fonseca GP, Marchesini B, Voigt DD, Campos Junior M, Zembrzuski VM, Carneiro JRI, Nogueira Neto JF, Cabello PH, Cabello GMK
Obes Facts 2020

6. Glucose levels and genetic variants across transcriptional pathways: interaction effects with BMI.

Povel CM, Feskens EJ, Imholz S, Blaak EE, Boer JM, Dollé ME
Int J Obes (Lond) 2010 May

7. Implications for health and disease in the genetic signature of the Ashkenazi Jewish population.

Guha S, Rosenfeld JA, Malhotra AK, Lee AT, Gregersen PK, Kane JM, Pe'er I, Darvasi A, Lencz T
Genome Biol 2012 Jan 25

8. Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease.

Che HV, Metzger S, Portal E, Deyle C, Riess O, Nguyen HP
Mol Neurodegener 2011 Jan 6

10. PPARGC1A sequence variation and cardiovascular risk-factor levels: a study of the main genetic effects and gene x environment interactions in children from the European Youth Heart Study.

Brito EC, Vimaleswaran KS, Brage S, Andersen LB, Sardinha LB, Wareham NJ, Ekelund U, Loos RJ, Franks PW
Diabetologia 2009 Apr

11. Prioritization and association analysis of murine-derived candidate genes in anxiety-spectrum disorders.

Hettema JM, Webb BT, Guo AY, Zhao Z, Maher BS, Chen X, An SS, Sun C, Aggen SH, Kendler KS, Kuo PH, Otowa T, Flint J, van den Oord EJ
Biol Psychiatry 2011 Nov 1

12. The application of nonsense-mediated mRNA decay inhibition to the identification of breast cancer susceptibility genes.

Johnson JK, Waddell N, kConFab Investigators, Chenevix-Trench G
BMC Cancer 2012 Jun 15

13. The gene coding for PGC-1alpha modifies age at onset in Huntington's Disease.

Weydt P, Soyal SM, Gellera C, Didonato S, Weidinger C, Oberkofler H, Landwehrmeyer GB, Patsch W
Mol Neurodegener 2009 Jan 8

Показать все
Поделиться: